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ABSTRACT

HO Me Me OMe Me H
formamicinone (2)

The total synthesis of formamicinone (2), the aglycone of formamicin (1), has been accomplished via the late-stage Suzuki cross-coupling of

fragments 5 and 6, the macrolactonization of seco ester 14, and the Mukaiyama aldol reaction of aldehyde 3 and methyl ketone 4. An efficient
and highly stereoselective second generation synthesis of vinyl iodide 6 is also described.

Formamicin (1) was isolated by Igarashi and co-workers in V112719, We report herein the first total synthesis of the
1997 from an actinomycete strain (MK27-91F2) obtained formamicin aglycone, formamicinone (2).
from a soil samplé:? Formamicin possesses strong activity ~ Our synthetic strategy (Scheme 1) called for the C{19)
against phytopathogenic fungi and moderate activity toward C(24) tetrahydropyran unit &fto be assembled via an aldol
Gram-positive bacteria. More interestingly, formamicin has _
strong cytotoxicity against murine tumor cell lines. The . .
stereochemistry of formamicin was assigned by using two- Scheme 1. Retrosynthetic Analysis
dimensional NMR techniques and confirmed by X-ray
structure analysis. Alkaline degradation liberated 2-deoxy-
p-rhamnose from C(21), thereby confirming the absolute
stereochemistry of 2

Formamicin is one of the more structurally complex
members of the plecomacrolide famf§ several of which
have been synthesized (e.g., elaiophylin (or its aglycerfe),
hygrolidin? concanamycin F%1 and bafilomycins A and
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reaction of aldehyd&'® and methyl ketond, which in turn
would derive from fragment$d and 6. The C(12-20)
fragment5 is an intermediate in our total synthesis of
bafilomycin A.1*1” A highly efficient and stereoselective
second generation synthesis9olfias been develop&dby a
route utilizing ana-alkoxypropargylation reaction of a chiral

aldehyd€e® We have also previously reported a synthesis of

the C(1—11) fragmend; however, this route suffered from

poor selectivity in the aldol reaction used to establish the

C(6—7) bonc?® Accordingly, we have developed an im-
proved second generation synthesié ¢6cheme 2) en route
to the total synthesis d.

Scheme 2. Synthesis of the C(11) Fragment?
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aKey: (a) MOMCI,i-PrNEt, CH,Cly, 0 — 23 °C; (b) LiBH,,
Et,O—EtOH, 0°C, 86% from7; (c) (COClp, DMSO, CHCl,, —70
°C, then8; (d) a-ethoxyvinyllithium, THF,—115°C; (e) PMBBT,
KHMDS, EN, THF, 0°C; (f) 1 N HCI, THF, H0O, 23°C, (70%
from 8); (g) 1-propynylmagnesium bromide, THF45 — —30
°C, 94%; (h) BuSnH, Pddba; (4 mol %), THF, 23°C, 79%; (i)
Me;BBr, 2,6-DTBMP, CHCl,, —60 °C, 92%; (j) E)-ethyl-S-
iodoacrylate, CuTC, BR(O)OBuUN, NMP, 92%; (k) DDQ, CHCl,—
H,0, 0 — 23 °C; () TESOTf, 2,6-lutidine, CKClI,, 0 °C, 77%
from 13; (m) NIS, CHCN, 0 °C, 87%.

Protection of the hydroxyl group of aldof®® as a
methoxymethyl (MOM) ether followed by reducti8of the

Scheme 3. Synthesis of Formamicinon)
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aKey: (a) Pd(PP¥)4, TIOEt, THF (85%); (b) KOSi(Mey, THF;
(c) 2,4,6-TCBC, pyridine, THF; (d) DMAP, toluene, 111G (62%,
from 14); (e) TFA, HO, THF; (f) Dess-Martin, pyridine, C¥Cl,
(90%, from15); (g) TMS—CI, EgN, LIHMDS, THF, —78 °C; (h)
3, BR—Et,0, —78°C, CH,Cl, (65% from16); (i) TAS-F, DMF
H.O (80%).

acyl oxazolidinone unit provided primary alcor®(86%).
Oxidation of8 using the standard Swern proto€dbllowed
by treatment of the resulting aldehyde withethoxyvinyl-
lithium?3in THF at—115°C delivered allylic alcoha® with
>20:1 diastereoselectivity. Protection of the hydroxyl group
of this intermediate as @-methoxybenzyl (PMB) ether
followed by acidic hydrolysis of the enol ether gave the
o-alkoxyketonelO in 70% overall yield from8.

Installation of the C(6) quaternary center was accomplished
with >20:1 selectivity by chelate-controlled addition of
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1-propynylmagnesium bromide 1d).?*2>Hydrostannylation treated with aldehyd® and BR-Et,O in CH,Cl, at —78 °C.

of the propargyl alcohol was best accomplished by using This provided aldolL6 in 72% yield with>95:5 selectivity.
Pd.dba and BuSnH, which provided vinylstannaril in The stereochemistry of this intermediate was assigned by
79% yield after two recycles of recovered starting material. using our NMR method Finally, treatment of16 with
Treatment ofl1 with Me,BBr in the presence of 2,6-di- TAS-F in wet DMF provided formamicinon@ in 80%
butyl-4-methylpyridine (2,6-DTBMP) at-60 °C delivered yield 34

cyclic acetall2 in 92% yield?® Stille-type cross-coupling Formamicinone has not been described in the literature.
of 12 and ethyl (E)-B-iodoacrylate promoted by copper(l) Our assignment of synthetas the aglycon of the natural
thiophene-2-carboxylate (CuTC) then gave endat 92% product follows from the known stereochemistry of fragments

yield?” The C(7)-PMB ether was removed and replaced by 5!7 and6%° and is strongly supported by comparison'sf
a TES ether (77% froml3), and the vinylsilane was and3C NMR data for2 with those of natural formamicin
converted into the vinyl iodide by treatment witN- (see Supporting Information). The only significant difference
iodosuccinimide (NIS) in CBCN. Vinyl iodide 6 thus between the two sets of data are for #@ resonances for
obtained (87%) was identical to material prepared via the C(20) and C(21), the site that is glycosylated in the natural
first generation sequenég. product.
The final stages of the synthesis of formamicino@g ( Efforts to complete a total synthesis of formamicin are in
commenced with the modifiéiSuzuki coupling® of 5 and progres® and will be reported in due course.
6, which providedl4in 85% yield (Scheme 3). Deprotection
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